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Abstract The most general Dirac Hamiltonians in (1 + 1) dimensions are revisited under
the requirement to exhibit a supersymmetric structure. It is found that supersymmetry allows
either for a scalar or a pseudo-scalar potential. Their spectral properties are shown to be
represented by those of the associated non-relativistic Witten model. The general discussion is
extended to include the corresponding relativistic and non-relativistic resolvents. As example,
the well-studied relativistic Dirac oscillator is considered and the associated resolved kernel
is found in a closed-form expression by utilising the energy-dependent Green’s function of
the non-relativistic harmonic oscillator. The supersymmetric quasi-classical approximation
for the Witten model is extended to the associated relativistic model.

1 Introduction

Dirac’s well-known equation [1,2] characterises the relativistic dynamics of spin- 1
2 particles

in the framework of quantum mechanics respecting also the principles of special relativity
[3]. This equation has been very successful in its early days by providing a clear formalism
for the spin of an electron as a point particle and also has led to the postulation of the
existence of its anti-particle which was discovered shortly afterwards reassuring Dirac’s
interpretation [4]. The Dirac equation also paved the way for quantum electrodynamics [5]
and quantum field theory of electromagnetic interactions [6]. Nowadays, the Dirac equation
is also an important tool for the description of the dynamics of charge carriers in carbon
nanostructures like graphene [7] or more general in so-called Dirac electronic systems [8].
Hence, exact solutions of the Dirac equation are of great interest but are rare compared to its
non-relativistic counterpart, the Schrödinger equation. Here various techniques for finding
exact solutions like the factorisation methods have been developed during the last century
and more recently received much attention in the context supersymmetric methods [9–12].
Also approximation methods like the WKB approach or perturbation methods are nowadays
well-established for the non-relativistic quantum mechanics.

Supersymmetric (SUSY) quantum mechanics in the context of relativistic dynamics char-
acterised by the Dirac equation was originally studied by Jackiw [13] and Ui [14]. See also the
work by Cooper et al. [15] and the book by Thaller [3]. Due to their relevance to the current
paper, let us also mention more recent studies focusing on the two-dimensional graphene in
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a magnetic field [16–18] and those related to (1 + 1) dimensional Dirac electron interacting
with a scalar or pseudo-scalar potential [19–24].

As the Dirac Hamiltonian with supersymmetry is known to be closely related to a non-
relativistic Pauli–Schrödinger-type Hamiltonian [10,13,14], it is natural to investigate the
possibility to derive exact solutions as well as approximations for a Dirac system by reducing
this problem to a non-relativistic system. Whereas in the recent work [25], we focused on
(3 + 1)-dimensional systems, we will limit ourselves in the current paper to supersymmetric
Dirac Hamiltonians in (1 + 1) dimensions.

We will show in the next section that supersymmetry puts a very strict condition on the most
general Dirac Hamiltonian in (1 + 1) dimensions. In essence, we find that SUSY basically
allows only for either a scalar or a pseudo-scalar potential. In both cases, the associated non-
relativistic system is the well-studied Witten model of supersymmetric quantum mechanics
[26]. After recalling in Sect. 3, some basic properties of supersymmetric Dirac Hamiltonians
and the Witten model, we show in Sect. 4 how the eigenvalue problem of the Dirac system
can be reduced to that of the Witten model. As an explicit example, the Dirac oscillator
is considered and its spectral properties are derived from those of the standard harmonic
oscillator on the real line. In Sect. 5, we will study the resolvent of the Dirac system and
show how this can be expressed in terms of the resolvent of the non-relativistic Witten model.
Again the Dirac oscillator is chosen as an explicit example and the corresponding Green’s
function is derived in closed form. In Sect. 6, we will utilise the quasi-classical approximation
of the Witten model to arrive at quasi-classical approximation of supersymmetric Dirac
Hamiltonians. This approximation is known to respect the spectral symmetry implied by
supersymmetry, and this property is also respected by the derived approximation formulas of
the Dirac system. Finally in the conclusions, we give an outlook how that current approach
can, for example, be applied to radial Dirac Hamiltonians and a Dirac particle in a box.

2 General Dirac Hamiltonian with supersymmetry

The most general (1 + 1)-dimensional Dirac Hamiltonian, acting on Hilbert space H =
L2(R) ⊗ C

2, can be put into the form

HD := cpσ1 + W (x)σ2 + [
mc2 + S(x)

]
σ3 + eV (x)1, (1)

where x and p = (h̄/i)∂x are the position and momentum operators on L2(R), respectively,
{σi |i = 1, 2, 3} are the Pauli matrices and 1 is the 2 × 2 unit matrix acting on C

2. In the
above, m > 0 and e stand for the mass and the charge of the Dirac particle moving along
the real line R, respectively, and c > 0 represents the speed of light. This particle interacts
with various potentials, namely a scalar potential S, a pseudo-scalar potential W (in 3 + 1
dimensional models this is also called a tensor potential) and an electro-static potential V ,
which is the 0-component of an electromagnetic vector potential (V,U ). The 1-component
U of this vector potential has been omitted as it can be gauged away due the local u(1) gauge-
invariance. In essence, in (1 + 1) dimensions the presence of a vector potential would lead to
a pure phase factor of the form exp{±i(e/c)

∫
dx U (x)} in the upper and lower component

of the 2-spinor, respectively.
Representing the Pauli matrices in the standard form

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (2)

123



Eur. Phys. J. Plus (2020) 135:464 Page 3 of 13 464

the above Dirac Hamiltonian can be put into a matrix form

HD =
(
M+ A
A† −M−

)
, (3)

where
M± := mc2 + S(x) ± eV (x) and A := cp − iW (x). (4)

In order to represent a supersymmetric Dirac Hamiltonian, these operators are required to
obey the condition [3,10]

AM− = M+A. (5)

This condition in essence guarantees that the squared Hamiltonian H2
D becomes block diag-

onal and also assures the existence of an exact Foldy–Wouthuysen transformation [27,28].
Above condition, however, turns out to be very restrictive and leads to constraints on the
potentials with which the Dirac particle interacts. To be more explicit, the constraints are
V (x) = 0 and S(x) = const., that is, the electro-static potential must vanish and the scalar
potential has to be constant. Without loss of generality, we also set S = 0 as a constant S can
always be absorbed by the mass term mc2.

Before studying the properties of such a supersymmetric Dirac Hamiltonian, let us briefly
consider here alternative representations of the general Hamiltonian (1). In fact, the repre-
sentation (2) of the Pauli matrices is the one where σ3 is in diagonal form. Obviously, one
could choose a basis in the C2 subspace where one of the other two Pauli matrices becomes
diagonal. This would be equivalent to a cyclic permutation of the three Pauli matrices in (1)
and keeping the representation (2) fixed. Note that the algebra obeyed by the Pauli matrices
is invariant under such cyclic permutations. Hence, an alternative to (1) would be the general
Hamiltonian

H̃D := cpσ2 + W (x)σ3 + [
mc2 + S(x)

]
σ1 + eV (x)1. (6)

Here we use a tilde to distinguish this representation for the standard one. In the matrix
representation (2), this Hamiltonian reads

H̃D =
(
M̃+ Ã
Ã† −M̃−

)
. (7)

Hence, we may identify the operators M̃± and Ã as follows.

M̃± := eV (x) ± W (x), Ã := −icp + mc2 + S(x). (8)

and the SUSY condition (5) leads us to the restriction W (x) = 0 and V (x) = const . As the
constant V in essence is a constant shift in the energy scale, we can set it to zero without loss
of generality. Note that this corresponds to the supersymmetric representation of the Dirac
Hamiltonian with a scalar field as discussed by Thaller [3] in his Section 5.5.1. See also
Section 9.4 in Ref. [10] and the detailed discussion by Nogami and Toyama [19]. Here we
note that the case of a scalar potential can be reduced to the previous case of a pseudo-scalar
potential by identifying W (x) = mc2 + S(x) and M± = 0. See, for example, Ref. [22].
We conclude that there is no need for a separate discussion of this case in the context of the
current work.

In principle there is a third representation (we use a hat to indicate this case) of the general
Hamiltonian (1) given by

ĤD := cpσ3 + W (x)σ1 + [
mc2 + S(x)

]
σ2 + eV (x)1, (9)
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which leads to the identification

M̂± := eV (x) ± cp and Â := W (x) − i(mc2 + S(x)). (10)

Here the SUSY condition (5) impliesmc2+S(x) = 0 or S(x) = −mc2 = const . In addition,
we have W (x) = const. Both imply that the operator Â = W = const., leading to a trivial
SUSY structure as will become obvious in the next section. Hence, we will not pursue this
case either. That is, from now on we will, without loss of generality, limit our discussion
to the case of a pure pseudo-scalar W , which in turn is directly applicable to the second
non-trivial case of a pure scalar potential.

3 Properties of supersymmetric Dirac Hamiltonians

As explicitly discussed in the previous section, without loss of generality, the most general
supersymmetric Dirac Hamiltonian in (1 + 1) dimensions can be put into the form

HD =
(
mc2 cp − iW (x)
cp + iW (x) −mc2

)
. (11)

That is, it is of the supersymmetric form (3) with

M± = mc2 and A = cp − iW (x). (12)

The N = 2 SUSY structure becomes explicit by introducing the supersymmetric Hamiltonian

HSUSY := 1

2mc2

(
H2

D − m2c4) =
(
H+ 0
0 H−

)
(13)

with partner Hamiltonians

H+ := 1

2mc2 AA
†, H− := 1

2mc2 A
†A (14)

and the SUSY charges

Q := 1

2mc2

(
0 A
0 0

)
, Q† = 1

2mc2

(
0 0
A† 0

)
. (15)

These operators obey the N = 2 SUSY algebra

HSUSY = {Q, Q†}, Q2 = 0 = (Q†)2, {Q, σ3} = 0, [HSUSY, σ3] = 0, σ 2
3 = 1,

(16)
where σ3 plays the role of the grading (or Witten) operator. In fact, the partner Hamiltonians
have the explicit form

H± = p2

2m
+ Φ2(x) ± h̄√

2m
Φ ′(x), (17)

which is the well-known one-dimensional non-relativistic Witten model of supersymmetric
quantum mechanics [10,26]. Note that in the above, we have rescaled the pseudo-scalar
potential W (x) =: √

2mc2 Φ(x), where Φ may now be identified with the SUSY potential
of the Witten model.

This Witten model has been studied extensively in the last 25 years and finds many appli-
cations in various fields of physics. Here let us summarise the most essential properties of this
model. Obviously, both partner Hamiltonians are non-negative and furthermore are essen-
tial isospectral, that means, there strictly positive eigenvalues are identical. Let us assume
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that both have a pure discrete spectrum represented by the eigenvalues εn with associated
eigenstates φ±

n . That is, we have

H±φ±
n = εnφ

±
n , εn > 0, n = 1, 2, 3, . . . . (18)

In addition, in case of an unbroken SUSY, there exists a zero-energy ground state, which for
convenience is then assumed to belong to H−. This can always be achieved with a change of
sign in the SUSY potential. Hence, in the case of unbroken SUSY, we have in addition the
ground state φ−

0 associated with ε0 = 0 defined via Aφ−
0 = 0 leading to the explicit form

φ−
0 (x) = N exp

{

−
√

2m

h̄

∫
dx Φ(x)

}

= N exp

{
− 1

h̄c

∫
dx W (x)

}
(19)

with N denoting a normalisation constant. The eigenstates (18) belonging to the strictly
positive spectrum are related to each other via the SUSY transformations

Aφ−
n =

√
2mc2εnφ

+
n , A†φ+

n =
√

2mc2εnφ
−
n , n = 1, 2, 3, . . . . (20)

Before studying the spectral properties of HD, let us briefly comment on the supersym-
metric representation which covers the case of a scalar potential S. As pointed out in the
previous section, the case of a pure scalar potential can be covered by above discussion when
we identify

W (x) := mc2 + S(x), Ã := −i (cp + iW (x)) , HSUSY = (H̃2
D − e2V 2)/2mc2, (21)

where V = const.
It is now also obvious that the third case mentioned in Sect. 3 does lead to a trivial SUSY

structure as in this case Â = W = const., which leads to trivial partner Hamiltonians
H± = W 2/2mc2 = const.

4 Spectral properties of the Hamiltonian

In this section, we will review the spectral properties of the most general supersymmetric
Dirac Hamiltonian in (1 + 1) dimensions, which is fully characterised by a pseudo-scalar
potential as shown in the previous section, cf. Eq. (11). Such supersymmetric Dirac Hamilto-
nians are known to be block-diagonalisable via a unitary transformation separating positive
and negative energy eigenspaces. Indeed, it is possible to show that there exists a unitary
matrix U , see for example Ref. [3,10], which transforms the Dirac Hamiltonian (11) into the
form

HFW := UHDU
† =

(√
2mc2H+ + m2c4 0

0 −√
2mc2H− + m2c4

)

. (22)

Hence, the positive and negative energy spectrum of HFW and hence also of HD is fully
determined by that of H+ and H−, respectively. As both partner Hamiltonians are essential
isospectral, the spectrum of HD is in fact symmetric about the origin,

E±
n = ±

√
2mc2εn + m2c4, n > 0. (23)

123
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In addition, in the case of an unbroken SUSY the eigenvalue E−
0 = −mc2 also belongs to

the spectrum of HD. The corresponding eigenstates are given by

ψ±
n = U †ψ̃±

n , with ψ̃+
n =

(
φ+
n
0

)
, ψ̃−

n =
(

0
φ−
n

)
. (24)

In other words, the spectral properties of HD, that is,

HDψ±
n = E±

n ψ±
n , (25)

are fully characterised by those of HSUSY. In case of unbroken SUSY in addition we have

HDψ−
0 = −mc2ψ−

0 , ψ−
0 = U †

(
0

φ−
0

)
=

(
0

φ−
0

)
. (26)

Note that U = 1 on ker H− as will be shown below.
Let us now study the unitary transformation matrix U in more detail. According to the

general SUSY approach [3,10], this matrix is given by

U := a+ + σ3 sgn Q1 a− with a± :=
√

|HD| ± mc2

2|HD| . (27)

Here the self-adjoint supercharge Q1 is defined as follows

Q1 :=
√

2mc2
(
Q + Q†) =

(
0 A
A† 0

)
(28)

and the definition of the sign function is

sgn x :=
⎧
⎨

⎩

+1
0

−1
for

x > 0
x = 0
x < 0

. (29)

To make things a bit more explicit, let us first look into the spectral properties of Q1. It is
straight forward to show with the help of the SUSY transformations (20) that the states

χ±
n := 1√

2

(
φ+
n

±φ−
n

)
(30)

are eigenstates of Q1, that is,

Q1χ
±
n = ±

√
2mc2εnχ

±
n . (31)

In addition, for unbroken SUSY, Q1 has a zero eigenvalue as

Q1χ
−
0 = 0 for χ−

0 :=
(

0
φ−

0

)
, (32)

which implies U = 1 on ker H− = span |φ−
0 〉〈φ−

0 |. Having this in mind, it is obvious that
the operator sgn Q1 can explicitly be written as

sgn Q1 =
(

0
(
AA†

)−1/2
A

(
A†A

)−1/2
A† 0

)

. (33)

Note that sgn Q1χ
±
n = ±χ±

n .
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Together with the diagonal matrix

|HD| =
(√

AA† + m2c4 0
0

√
A†A + m2c4

)
(34)

and the dimensionless operator a := A/mc2, we have

a± =

⎛

⎜
⎜
⎜
⎜
⎝

√√
aa† + 1 ± 1

2
√
aa† + 1

0

0

√√
a†a + 1 ± 1

2
√
a†a + 1

⎞

⎟
⎟
⎟
⎟
⎠

(35)

leading to the explicit but rather complicated expression

U = 1√
2

⎛

⎜
⎜
⎜
⎜
⎝

√√
aa† + 1 + 1√
aa† + 1

(aa†)−1/2a

√√
a†a + 1 − 1√
a†a + 1

−(a†a)−1/2a†

√√
aa† + 1 − 1√
aa† + 1

√√
a†a + 1 + 1√
a†a + 1

⎞

⎟
⎟
⎟
⎟
⎠

. (36)

Noting that

aφ−
n =

√
2εn

mc2 φ+
n , a†φ+

n =
√

2εn

mc2 φ−
n , (37)

which implies
a†(aa†)−1/2φ+

n = φ−
n , a(a†a)−1/2φ−

n = φ+
n , (38)

we obtain explicit expressions for the eigenfunctions (24) of the original Dirac Hamiltonian
(11) in terms of the eigenfunctions of the corresponding non-relativistic Witten model

ψ+
n = 1√

2

⎛

⎝

√
1 + (

1 + 2εn/mc2
)−1/2

φ+
n√

1 − (
1 + 2εn/mc2

)−1/2
φ−
n

⎞

⎠ = 1√
2

⎛

⎝

√
1 + mc2

E+
n

φ+
n√

1 + mc2

E−
n

φ−
n

⎞

⎠ ,

ψ−
n = 1√

2

⎛

⎝−
√

1 − (
1 + 2εn/mc2

)−1/2
φ+
n√

1 + (
1 + 2εn/mc2

)−1/2
φ−
n

⎞

⎠ = 1√
2

⎛

⎝
−

√
1 − mc2

E+
n

φ+
n√

1 − mc2

E−
n

φ−
n

⎞

⎠ ,

ψ−
0 =

(
0

φ−
0

)
.

(39)

Note that these states constitute a complete orthonormal set on H due to the orthonormality
of 〈φ+

m |φ+
n 〉 = 〈φ−

m |φ−
n 〉 = δmn and the relation E−

n = −E+
n . Hence, we have reduced the

complete eigenvalue problem of a general supersymmetric Dirac Hamiltonian (11) to that of
the associated non-relativistic Witten model (17). Above results cover several special cases
discusses before. For example, they agree with previous work exclusively dedicated to the
Dirac oscillator [21,29]. The special case of a vanishing mass characterising a Dirac electron
in graphene under the influence of a magnetic field has in essence been discussed by Kuru,
Negro and Nieto [16] and agrees with above result when taking the limit m → 0.

4.1 The Dirac oscillator in (1+1) dimensions

As an illustrative example, let us consider the (1 + 1)-dimensional version of the Dirac
oscillator [30] which is characterised by the pseudo-scalar potential

W (x) = mcωx, ω > 0. (40)

123
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Obviously the two partner Hamiltonians are represented by a shifted harmonic oscillator

H± = p2

2m
+ m

2
ω2x2 ± h̄ω

2
. (41)

The corresponding spectral properties of these Hamiltonians are well known and given by

εn = h̄ωn, φ+
n = |n − 1〉, φ−

n = |n〉. (42)

Here n ∈ N for H+, whereas n ∈ N0 for H−, and |n〉 denotes a standard harmonic oscillator
eigenstate which obeys the relations

b|n〉 = √
n|n − 1〉, b†|n〉 = √

n + 1|n + 1〉, (43)

with b := ip/mω + x and b† = −ip/mω + x being the standard annihilation and creation
operators of the harmonic oscillator. They are related to the dimensionless operators a and
a† introduced above as follows:

a = −i

√
2h̄ω

mc2 b, a† = i

√
2h̄ω

mc2 b†. (44)

Hence via (23) and (39) we immediately find that the eigenvalues and eigenstates of the Dirac
oscillator Hamiltonian

HD =
(
mc2 cp − imcωx
cp + imcωx −mc2

)
(45)

are given by

E+
n = mc2

√
1 + 2n h̄ω

mc2 , ψ+
n = 1√

2

⎛

⎜⎜
⎝

√

1 +
(

1 + 2n h̄ω
mc2

)−1/2 |n − 1〉
√

1 −
(

1 + 2n h̄ω
mc2

)−1/2 |n〉

⎞

⎟⎟
⎠ ,

E−
n = −mc2

√
1 + 2n h̄ω

mc2 , ψ−
n = 1√

2

⎛

⎜⎜
⎝

−
√

1 −
(

1 + 2n h̄ω
mc2

)−1/2 |n − 1〉
√

1 +
(

1 + 2n h̄ω
mc2

)−1/2 |n〉

⎞

⎟⎟
⎠ ,

(46)

where n = 0 is only allowed for the second line with ψ−
0 having only a lower component, cf.

last line in Eq. (39). As mentioned before, these results are not new and agree with previous
work dedicated to the Dirac oscillator in (1 + 1) dimensions [21,29]. Let us note that we can
also recover from this the zero-mass case discussed by Kuru, Negro and Nieto [16] when
setting in the above result 2mω → ω and taking the limit m → 0.

5 Spectral properties of the resolvent

In this section, we will study the resolvent of a general supersymmetric Dirac Hamiltonian
(11) defined by

GD(z) := 1

HD − z
, z ∈ C\spec HD (47)

which can be expressed in terms of the so-called iterated resolvent g as follows

GD(z) = (HD + z) g(z2), g(z2) := 1

H2
D − z2

. (48)

123
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As H2
D is block-diagonal,

H2
D = 2mc2

(
H+ 0
0 H−

)
+ m2c4, (49)

so is

g(z2) = 1

2mc2

(
G+(ζ(z)) 0
0 G−(ζ(z))

)
, (50)

where

G±(ζ ) := 1

H± − ζ
(51)

denotes the resolvent for the SUSY partner Hamiltonians (17) and we have introduced

ζ(z) := z2

2mc2 − mc2

2
. (52)

Hence we can express the resolvent (47) in terms of the non-relativistic resolvents (51) as
follows

GD(z) = 1

2mc2

(
(z + mc2)G+(ζ(z)) AG−(ζ(z))
A†G+(ζ(z)) (z − mc2)G−(ζ(z))

)
. (53)

Utilising the spectral representations

G±(ζ ) =
∑

εn≥0

|φ±
n 〉〈φ±

n |
εn − ζ

, (54)

where the ε0 = 0 term is only present in G− in case of an unbroken SUSY, we arrive with
the help of the SUSY transformations (20) at the spectral representation of (47)

GD(z) =
⎛

⎝
0 0

0
|φ−

0 〉〈φ−
0 |

z + mc2

⎞

⎠

+
∑

εn>0

1

2mc2εn + m2c4 − z2

((
z + mc2

) |φ+
n 〉〈φ+

n | (
2mc2εn

)1/2 |φ+
n 〉〈φ−

n |
(
2mc2εn

)1/2 |φ−
n 〉〈φ+

n | (
z − mc2

) |φ−
n 〉〈φ−

n |

)

.

(55)
Again the first term, which has a pole at E0 = −mc2, is only present in case of an unbroken
SUSY. The poles of the second term reflect the energy eigenvalues as given in (23) as expected.

Note that besides the spectral representation, the diagonal form (50) also allows to derive a
path integral representation of the Green’s function following, in essence, the same procedure
as presented in Ref. [25]. Below we will derive the Green’s function of the Dirac oscillator
in closed form directly from that of the standard harmonic oscillator.

5.1 The Green’s function of the Dirac oscillator

Let us reconsider the Dirac oscillator in (1 + 1) dimensions. As we have seen in the previous
section, the partner Hamiltonians of the Dirac oscillator are related to the standard harmonic
oscillator Hamiltonian

H0 := p2

2m
+ m

2
ω2x2 (56)

123



464 Page 10 of 13 Eur. Phys. J. Plus (2020) 135:464

via constants shifts given by H± = H0 ± h̄ω/2. Hence, the two partner resolvents (54) can
be obtained from the usual harmonic oscillator resolvent

G0(ζ ) := 1

H0 − ζ
(57)

via the relation G±(ζ ) = G0(ζ ∓ h̄ω/2). Following a recent work by Glasser and Nieto [31],
the coordinate representation of (57) can be given in closed form

G0(x ′′, x ′; h̄ωε) := 〈x ′′|G0(h̄ωε)|x ′〉 =
√

m

πωh̄3 �
( 1

2 − ε
)
Dε−1/2(μx+)Dε−1/2(−μx−).

(58)
In the above, Dν stands for the parabolic cylinder function, � is Euler’s gamma function,
μ := √

2mω/h̄ and x± stands for the maximum and minimum of x ′′ and x ′, respectively,
that is, x+ := max(x ′′, x ′) and x− := min(x ′′, x ′). For simplicity, we have introduced the

dimensionless parameter ε := ζ/h̄ω = z2

2mc2 h̄ω
− mc2

2h̄ω
. With this explicit expression, it is

now also possible to find the corresponding closed-form expression for the Green’s function
of the Dirac oscillator. In fact, with the help of the relations

D′
ν(y) + (y/2)Dν(y) = νDν−1(y), −D′

ν(y) + (y/2)Dν(y) = Dν+1(y) (59)

one finds following useful relations for the creation and annihilation operators (43),

bDν(μx) = νDν−1(μx), b†Dν(μx) = Dν+1(μx), b†bDν(μx) = νDν(μx). (60)

From these relations, it is straight-forward to obtain the closed-form expressions

1

2mc2 〈x ′′|AG−(ζ )|x ′〉 = i

h̄c

sgn(x ′′ − x ′)√
2π

�(1 − ε)Dε−1(μx+)Dε(−μx−)

1

2mc2 〈x ′′|A†G+(ζ )|x ′〉 = i

h̄c

sgn(x ′′ − x ′)√
2π

�(1 − ε)Dε(μx+)Dε−1(−μx−)

z + mc2

2mc2 〈x ′′|G+(ζ )|x ′〉 = 1

h̄c

z + mc2

√
2πmc2h̄ω

�(1 − ε)Dε(μx+)Dε(−μx−)

z − mc2

2mc2 〈x ′′|G−(ζ )|x ′〉 = 1

h̄c

z − mc2

√
2πmc2h̄ω

�(−ε)Dε−1(μx+)Dε−1(−μx−)

(61)

which constitute the four components of the resolvent (53) in the coordinate representation,
that is 〈x ′′|GD(z)|x ′〉, for the Dirac oscillator (45). Obviously the pole at ε = 0 leads to the
eigenvalue z = E−

0 = −mc2 whereas the other poles at ε = n ∈ N result in the eigenvalues
as given in (46).

6 Quasi-classical approximation

In the previous section, we have seen that the supersymmetric Dirac problem in (1 + 1)

dimensions can be reduced to the corresponding non-relativistic Witten model. That is, the
spectral properties of HD are fully deduced from those of the partner Hamiltonians H±. In
particular, all exactly solvable Witten models, e.g. those which are shape-invariant, imme-
diately result in the exact solutions of the corresponding Dirac system. Even closed-form
expression of the resolvent GD can be obtained when the corresponding resolvents G± are
given in closed form.
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However, the above general discussion of Sect. 3 is not limited to only exactly solvable
Witten models. It may also be applied to approximation methods. Here we consider the so-
called quasi-classical approximations to the energy eigenvalues of the Witten model. In fact,
this quasi-classical approximation is in general better than the usual WKB approximation as
it respects the SUSY-induced symmetry between the eigenvalues of the two partner Hamil-
tonians and is exact for the ground-state energy in case of unbroken SUSY [10]. To be more
explicit, in case of unbroken SUSY with the ground state belonging to H− the eigenvalues
εn for the SUSY partners H± are obtained via the so-called CBC formula1

∫ xR

xL

dx
√

2m
(
ε − Φ2(x)

) = h̄πn, n ∈ N0, (62)

where the left and right turning points xL ≤ xR are defined by Φ2(xL/R) = ε. Note that as
before n = 0 is only allowed for H− and obviously implies ε0 = 0, which is exact. For n ∈ N

above CBC formula provides a quasi-classical approximation to the jointed eigenvalues of
H±. In case of shape-invariant systems, this approximation is even exact for any n.

In the case of a broken SUSY, the corresponding quasi-classical approximation is given
by the so-called EIJ formula2 and reads

∫ xR

xL

dx
√

2m
(
ε − Φ2(x)

) = h̄π

(
n − 1

2

)
, n ∈ N. (63)

Again this formula reflects the strict iso-spectral property of the partner Hamiltonians as
well as the strict positivity εn > 0 for all n. Furthermore, this approximation results in exact
eigenvalues in case of shape-invariant systems.

Let us now utilise the relation (23) between the eigenvalues of the Dirac Hamiltonian and
the Witten Hamiltonians. For unbroken SUSY, the relativistic version of the quasi-classical
approximation then reads

∫ xR

xL

dx
√
E2 − m2c4 − W 2(x) = ch̄πn, n ∈ N0, (64)

where the turning points xL ≤ xR are now given by the relation W 2(xL/R) = E2 − m2c4.
Again for n = 0 this results in the exact ground-state energy E−

0 = −mc2. The approximate

eigenvalues are given by E±
n = ±√

E2 for n ∈ N. Similar, for broken SUSY, we have

∫ xR

xL

dx
√
E2 − m2c4 − W 2(x) = ch̄π

(
n − 1

2

)
, E±

n = ±
√
E2, n ∈ N. (65)

Again, as in the non-relativistic case, whenever the SUSY potential W is shape-invariant both
formulas (64) and (65) reproduce the exact spectrum of the corresponding Dirac Hamiltonian.
We leave it as an exercise to the reader to verify that for W (x) = mcωx the formula (64)
reproduces the spectrum of the Dirac oscillator as given in (46).

1 Here CBC stands for Comtet, Bandrauk and Campbell [32] as these authors were the first pointing out that
this modified approximation formula of the well-known WKB approximation yields the exact spectrum in
case of a shape-invariant W for unbroken SUSY.
2 This version, applicable to the case of broken SUSY, is due to Eckhardt [33] and Inomata and Junker [34]
and provides exact spectral values in case of a shape-invariant W with broken SUSY. For a detailed discussion
of both the CBC and EIJ formula, see chapter 6 in [10], where also the approximate energy eigenfunctions are
discussed to some detail.
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7 Conclusions

In the current paper, we have studied the most general supersymmetric Dirac Hamiltonian in
(1+1) space-time dimensions. It has been shown that the spectral properties of the relativistic
Hamiltonian HD as given in Eq. (11) can be reduced to the non-relativistic spectral problem
(18) of the Witten model. Hence the main results are represented by Eqs. (23) and (39). In
addition, we have shown that the relativistic resolvent kernel (47) can be expressed in terms of
those of the Witten model (51) via Eq. (53). As an explicit example, we have chosen the Dirac
oscillator for which the closed-form expression (61) of the Green’s function was obtained
for the first time. Obviously, any of the shape-invariant non-relativistic SUSY models, which
exhibit exact solutions, immediately result in exact solutions of the corresponding relativistic
model.

With the discussion of Sect. 6, we may also consider not exactly solvable systems by
applying the supersymmetric quasi-classical approximations. Here for example, one could
study an harmonic oscillator systems being characterised by a SUSY potential Φ(x) = |x |d
and Φ(x) = sgn x |x |d exhibiting broken and unbroken supersymmetry, respectively. It shall
be noted that in the limit d → ∞ theses systems simulate a particle in the box with various
boundary conditions and the quasi-classical approximation is known [10] to become exact
in that limit, too. Hence, this will provide another route towards the study of a Dirac particle
in a box, a topic being still of interest [35–39].

Despite the fact that the current paper focuses on the (1 + 1) dimensional Dirac systems,
some of the present results are valid in the more general case of arbitrary supersymmetric
Dirac Hamiltonians. For example, the results of Sect. 4 and in particular the explicit expression
(36) for the unitary transformation matrix U are valid for an arbitrary SUSY Hamiltonian
(3) as long as M+ = M− = mc2, which is the case for almost all supersymmetric Dirac
Hamiltonians [10].

Finally, let us mention that the present results also apply to radial symmetric Dirac Hamilto-
nians being supersymmetric. In fact, due the spherical symmetry the radial Dirac Hamiltonian
is of the same form as given in (11), cf. eq. (9.102) in [10], with a pseudo-scalar potential
being of the form W (r) = κ/r + Φ(r) now acting on the positive half-line r ∈ R

+ and κ

denotes the eigenvalues of the spin-orbit operator.
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